
Localized Fault Recovery for Nested Fork-Join Programs

• High performance computers are increasingly susceptible to errors 
• Periodic checkpointing is widely used approach to fault tolerance, but

– recovery cost can be proportional to system size 
– it introduces large performance overhead 

• We consider the design of fault tolerance mechanisms in the presence 
of fail-stop failures for
– nested fork-join programs, 
– executed on distributed memory machines,
– load balancing provided by work stealing

Problem Statement and Objectives
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Introduction

• Reducing the amount of re-executed work in the presence of failures 
• Guaranteeing forward progress even during fault recovery 
• Ensuring correct interleaving of remote operations and error 

notifications 
• Efficiently handling nested recovery, concurrent recovery, and failure-

during-recovery scenarios

Our Proposal: ForkJoinFT

• A modified distributed-memory algorithm that incorporates efficient 
fault recovery 

• ForkJoinFT executes all and only lost work due to a fault, it needs to:
1. track the relationship between the subcomputations performed by 

different threads
2. reconstruct the relationship among live processes that have 

pending interactions with the failed node
3. re-execute all and only lost subcomputations without interfering 

with the normal task execution

Nested fork-join models provide an opportunity 
to perform localizated fault recovery 
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fib(n)
{

if ( n < 2 )
return n;

a = fork fib(n-1);
b = fork fib(n-2);
join;
return a + b;

}

• We extended steal tree algorithm [PLDI’13] 
to retain only the live portion of 
subcomputations:
– each steal operation is identified with a 

unique ID (victim rank, working phase, 
level, and step)

– at every steal operation, the thief gets 
its victim steal path and adds the 
current steal operation

– all the preceded steals (Stolen Step) 
from a given victim in the same working 
phase are recorded 

Recovering Global Computation

Tracking Global Computation

• Failure notifications are assumed to be sent to the server threads
• Upon a failure notification, each server thread independently initiates 

recovery:
– Identifies pending subcomputations stolen by the failed worker
– marks the victim of the failed worker as a recovery node
– requests steal tree paths that include the failed worker from all 

workers
– collects all steal tree paths and construct a replay tree

• the root of the replay tree is the subcomputation stolen by the 
failed worker

• collection is a distributed binary-tree-based reduction
– makes the replay tree and its root task ready to be stolen

Scheduling Re-Execution

• When a thief steals work to be re-executed:
– its victim determines the task’s frontier
– task’s frontier is the failed worker’s list of alive children
– the thief assumes ownership of the root task of replay tree

• thieves of this subcomputation will return their results to new 
owner, rather than the failed worker

Results

• The increase of total work time is generally less than 15%
• A regression analysis (OLS) models the relation between the number 

of re-executed tasks and the increase in work time reveals (sub) linear 
relationships

Conclusions

• We presented an approach to localized fault recovery specific to 
nested fork-joined programs executed on distributed-memory systems

• Our fault tolerance approach: 
– introduces negligible overhead of in the absence of faults, within 

the execution time variation
– re-executes all and only lost work due to faults
– significantly decreases the amount of work re-executed as 

compared to alternative strategies
– presents a recovery overhead roughly proportional to the amount of 

lost work
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32T failed (31WT+1ST)
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Figure 10: Execution slowdown with the failure of one, two, or four compute
nodes (i.e., 31/1, 62/2, 124/4 failed worker/server threads, respectively) with
respect to the baseline algorithm for 1024, 2048, and 4096 threads.

32 nodes 64 nodes 128 nodes

SCF 2.79 2.48 2.31
TCE 2.68 2.61 2.43
FIB 0.92 0.88 0.85
BPC 42.45 43.12 43.24
UTS 2.54 2.48 2.40

Table I: Space overhead per thread
(KB)

error is small even in a relatively high-fault system. Because
of the randomness of our fault injection methodology and
variability in the execution due to random work stealing,
we repeat each experiment 45 times and report average and
standard deviation.

A. Space and time overheads
Figure 10 (blue bars) shows the relative slowdown of

ForkJoinFT with respect to FORKJOIN when scaling from
1024 (32 compute nodes) to 4096 threads (128 compute
nodes). We observe that the relative slowdown compared
to FORKJOIN does not increase with core count, and is
negligible, within the variations in the execution time.

To estimate the space overhead incurred, we tracked the
steal tree allocation and deallocation operations through
the execution and report the maximum memory usage.
Table I shows the space overhead per worker thread is small
compared to the overall application memory footprint and
remains roughly constant when scaling to larger node counts.
BPC incurs a larger space overhead compared to the other
benchmarks due to particularly narrow and long steal trees.

B. Execution slowdown due to faults
The execution slowdown suffered by an application in a

faulty environment depends on three main factors: 1) the
fraction of lost work, 2) the fraction of failed compute nodes
and, 3) the time at which the fault is injected. The re-
execution of the lost work is roughly proportional to the
execution slowdown, as the application has to perform extra
work. According to our fault model, failed node do not
resume their execution. Thus, after the failure, the system
effectively consists of fewer computing resources. Finally,
if a fault occurs late during the execution, there might not
be enough task to distribute among the compute nodes, thus
the application’s critical path length may increase, resulting
in further performance degradation.

Figure 10 shows that the relative increase in execution
time due to faults is very small and often below 10%
(average slowdown), with the impact of each fault decreasing

with increase in system size. The execution time does
increase when a larger number of compute nodes fail, as the
failed compute nodes do not participate in the computation
after the failure. With 4096 cores, the execution time with
fault injection, on average, does not vary significantly from
fault-free execution. Since the number of failed threads is
at most 3.2% of the total number of threads, there are
enough compute resources to re-execute the lost computation
before the end of the execution, so as to not significantly
impact the overall execution time. However, there are cases
in which the overhead is up to 20% (e.g., FIB with 12.5%
of total number of threads failed). This is due to large
portion of computing resources unavailable after the failure
and/or a late injection of faults during the execution of the
application. We analyzed the data and observed that the runs
with larger slowdown than average are those where faults are
injected late in the application’s execution.

C. Tasks re-executed
To understand the effectiveness of ForkJoinFT in mini-

mizing the re-execution cost, we report the average number
of tasks re-executed in Figure 11a. Because each application
executes a different number of tasks, we report our results
in terms of percentage of re-executed tasks relative to the
number of tasks executed in a fault-free run. The errors
bars denote the standard deviation in percentage of re-
executed tasks observed during the 45 runs. We observe
that the amount of work re-executed is generally below 10%
across all applications. The percentage of re-executed tasks
generally increases with the number of failed worker threads,
while decreasing with system size. This is consistent with
our observations in Figure 10 and confirms the assumption
that, for strong-scaling applications, the amount of work
lost per thread, hence per compute node, decreases with the
increase in compute node count.

D. Relationship between tasks and work time
ForkJoinFT minimizes the amount of re-execution rather

than directly manage total execution. Total execution time

• Negligible overhead and does not increase with core count 
• Space overhead per thread is generally a few  KB and remains roughly 

constant when scaling to larger node counts 
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Average 3.1% Maximum 17% ForkJoinFT

Average 18.3% Maximum 75% State-of-the-art
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