EE> U.S. DEPARTMENT OF

%OAK RIDGE

National Laboratory

Localized Fault Recovery for Nested Fork-Join Programs

Gokcen Kestor (Oak Ridge National Laboratory)
Sriram Krishnamoorthy (Pacific Northwest National Laboratory), Wenjing Ma (Chinese Academy of Sciences)

Introduction Tracking Global Computation

1

- High performance computers are increasingly susceptible to errors - We extended steal tree algorithm [PLDI’13] oy 32 modes 64 nodes 128 nodes

- Periodic checkpointing is widely used approach to fault tolerance, but to retain only the live portion of N oo SOOI B TCE oes e >3
— recovery cost can be proportional to system size subcomputations: B 1.0 [g I et B II | BPC 445 @1 a0
— it introduces large performance overhead — each steal operation is identified with a . :jf i | a0 | = 2t 24 >0

unique ID (victim rank, working phase, ANE I e .

» We consider the design of fault tolerance mechanisms in the presence level, and step) , , % 0.85 LI - 1 . | | O . 1 [B
of fail-stop failures for — at every steal operation, the thief gets 20 21 P 02420484096 102420484096 102420484096 102420484096 102420484096
— nested fork-join programs, its victim steal path and adds the 00 @ o e o o -

— executed on distributed memory machines, current steal operation - * Negligible overhead and does not increase with core count
— load balancing provided by work stealing — all the preceded steals (Stolen Step)_ 30 « Space overhead per thread is generally a few KB and remains roughly
p " from a given victim in the same working constant when scaling to larger node counts
phase are recorded T 25 | | | T 25 | . |
5 w/ 1024T —+ w/ 4096T S w/ 1024T —+ w/ 4096T
3 20 F w/ 2048T P 3 - Linear Reg. 3 20 F w/ 2048T b 3 - Linear Reg.
] e T T
) - - -)
£ ' | | - £ 10
Q (<)
E 1 E 3
¥ {1 ¥ o
- Failure notifications are assumed to be sent to the server threads S S n
* Upon a failure notification, each server thread independently initiates s i i i s

* Reducing the amount of re-executed work in the presence of failures recovery: Lo -10 0 = 10 15 0 -10 0 5 10 15 20

- Guaranteeing forward progress even during fault recovery — ldentifies pending subcomputations stolen by the failed worker Tasks rexecuted (%) Tasks rexecuted (%)

o ' ' ' ' — marks the victim of the failed worker as a recovery node . L
Ents_fl_Jrlr](_g correct interieaving of remote operations and error . . "y * The increase of total work time is generally less than 15%
notifications — requests steal tree paths that include the failed worker from all _ , _

- Efficiently handling nested recovery, concurrent recovery, and failure- workers * Aregression analysis (OLS) models the relation between the number
during-recovery scenarios — collects all steal tree paths and construct a replay tree of re-executed tasks and the increase in work time reveals (sub) linear
£ib(n) - the root of the replay tree is the subcomputation stolen by the relationships
! if (n<2) failed worker o ... 32T failed mEEEW 64T failed = 128T failed Wemmm _____ . ____

return n;) collection is a distributed binary-tree-based reduction g [] ______________________ | -
a = fork fib(n-1); B B : %0
S o s i o TR e makes the replay tree and its root task ready to be stolen g €0 F S ———— TR -
join; -7 > TN 4(3) L
} return a + b; (9 A R o - Fia) \\\ B 40
- =2 g /// - ‘\ O
@ l/ Ci” \\\ cccccccccc // /,’// C’I’ I @ \\ ﬁ zz
/ T 7 ~d { \ @ 20 oo - -t e LLlLlsooooooooooooooooooo---om
/ // \\ ot b L ,I p \ .
c)) Jee) L0 e MO C G ON G BION O 10l ﬂrﬁj """""" g N I
// / \ / /’ ,l p = . = - —_ . P
F) F2) F2) // F2) AFw) (o) ,' I,' // Fa) (Fo) :'/ o) @ Fro) ’//' : : 1024 2SoC4F8 4096 1024 2T0C4E8 4096 1024 2F0I4B8 4096 1024 2B0P4C8 4096 1024 2U0T488 4096
" . SChedUIlng Re-ExeCUtlon 80 b ... 32T failed mmmmm 64T failed = 128T failed wemssm |

]-.

_ - When a thief steals work to be re-executed:
Our Proposal: ForkJoinFT — its victim determines the task’s frontier
— task’s frontier is the failed worker’s list of alive children
— the thief assumes ownership of the root task of replay tree
* thieves of this subcomputation will return their results to new

Task rexecuted (%)

* A modified distributed-memory algorithm that incorporates efficient

fault recover . '
y Owner, rather than the falled Worker 1024 ZSOC4F8 4096 1024 2TOC4E8 4096 1024 2F0I4B8 4096 1024 2BOP4C8 4096 1024 2U0T438 4096
. . L Patching
* ForkdJoinF T executes all and only lost work due to a fault, it needs to: i Steal from Privatization ____ " Enforced steal
. . . replays " ¥ ‘\ , |l’ N\\
1. track the relationship between the subcomputations performed by o omeEemEs S 5 “;,,Yd--‘i\\ ./ » Privatization: spawned task is
different threads , Recovery -, not stolen in the failed execution,
. . . Empty frame ‘e Execution v il b e e t . W t d ht | l df It f t
2. reconstruct the relatlonshlp amOng Ilve processes that have returned "~ _ .- WI e exeCU e y e Curren e presen e . an approaC O Oca |Ze au. relcovery SpeCI IC O
oending interactions with the failed node '. worker nested fork-joined programs executed on distributed-memory systems
3 re-execute all and onlv lost subcomoutations without interferin Merged frame » Enforced steal: spawned task is * Our fault tolerance approach:
- IE y | p 9 st returned . Recovery done stolen in the failed execution, will — Introduces negligible overhead of in the absence of faults, within
with the normal task execution rom deque ~ be donated to other thieves the execution time variation
- Patching: Spawned task a|ready — re-executes all and Only lost work due to faults
ekl il Sl WshimeeinFAuGE e Ll Horee e IS LRt ely o Wi =el e exists in another live worker, no — significantly decreases the amount of work re-executed as
Join Programs", IEEE International Parallel and Distributed Processing Symposium IPDPS 2017, need to be executed Compared to alternative strategies

. 397-408, May 2017, Orlando (FL). Fork _
i ’ o — presents a recovery overhead roughly proportional to the amount of

lost work

