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Introduction Tracking Global Computation
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- High performance computers are increasingly susceptible to errors - We extended steal tree algorithm [PLDI’13] oy 32 modes 64 nodes 128 nodes
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- Failure notifications are assumed to be sent to the server threads S S n
* Upon a failure notification, each server thread independently initiates s i i i s

* Reducing the amount of re-executed work in the presence of failures recovery: Lo -10 0 = 10 15 0 -10 0 5 10 15 20

- Guaranteeing forward progress even during fault recovery — ldentifies pending subcomputations stolen by the failed worker Tasks rexecuted (%) Tasks rexecuted (%)
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- Efficiently handling nested recovery, concurrent recovery, and failure- workers * Aregression analysis (OLS) models the relation between the number
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_ - When a thief steals work to be re-executed:
Our Proposal: ForkJoinFT — its victim determines the task’s frontier
— task’s frontier is the failed worker’s list of alive children
— the thief assumes ownership of the root task of replay tree
* thieves of this subcomputation will return their results to new
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* A modified distributed-memory algorithm that incorporates efficient
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