
Comparison of Machine Learning Algorithms and Their
Ensembles for Botnet Detection

Songhui Ryu

Department of Computer and Information Technology, Purdue University, West Lafayette, IN 47907, USA
ryu26@purdue.edu

SC 17

INTRODUCTION

METHODOLOGY: ALGORITHMS & METRICS

CONCLUSION

TEST & RESULTS

Botnet is a network of compromised devices controlled by a Botmaster for malicious tasks.
Botnet Detection, like Intrusion Detection System, can be done by monitoring observable botnet
behaviors in network traffics. Machine learning techniques, nowadays, have been popularly used
to detect abnormal traffics.

dddddd	

Machine Learning Algorithms
& Ensemble Methods

The most common machine learning (ML) algorithms
for classification are Gaussian Naïve Bayes (GNB),
Neural Networks (NN) and Decision Tree (DT). These
all are supervised learning which need labeled data.

Ensemble methods, which combine predictions of
each ML classifier with or without weights, can be
distinguished as below.

The CTU-13 dataset is a public dataset featuring Botnet traffic mixed with normal and background
traffic captured at the CTU university, Czech Republic in 2011. Among 13 different network traffic
captures, #9, #10, and #11 were used. Feature

Date
Flow start time
Duration
Protocol
Src IP addr:Port
Dst IP addr:Port
Flags
Types of
services
of Packets
of Bytes
of Flows
Label

DATASET

Accuracy Measurements

To compare accuracy of the algorithms, the following metrics are considered.

Ø  F1 score: F1 score considers both the precision 𝑝 and the recall 𝑟 of the test. F1 score can be and the recall 𝑟 of the test. F1 score can be of the test. F1 score can be
between 0 and 1 where 1 means its best value and 0 its worst.

𝐹1=2 ∗​𝑝∗𝑟/𝑝+𝑟  𝑤ℎ𝑒𝑟𝑒 𝑝= ​𝑇𝑃/𝑇𝑃+𝐹𝑃 , 𝑟= ​𝑇𝑃/𝑇𝑃+𝐹𝑁 

Ø Matthews correlation coefficient (MCC): With true and false positives and negatives, MCC
can be between -1 and +1 where +1 means a perfect prediction, 0 no better than random
prediction and -1 and inverse prediction.

𝑀𝐶𝐶= ​𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁/√⁠(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)  

Results

Although F1 score generally shows higher scores than MCC, MCC is more reliable because the
true negatives are not considered in F1 score.

Botmaster Botnet
Control &

Command Servers

Communicate using
HTTP, POP3, IRC

Send SPAM
Execute DoS attack
Obtain sensitive data

1. Botmaster generates traffic
while communication

2. DNS traffic to C&C server
often remain unchanged

3. System/library calls are
made by Botnet

Victim

Botnet detection systems may use one or more machine learning algorithms, but would making
use of them together really make a difference?

Neural
Nets

Decisio
n Tree

Gaussia
n Naïve
Bayes

Ø Voting: As the simplest way, all different classifiers are trained separately with whole training
data and its posterior probabilities are averaged.

Ø Bagging: It samples multiple random sub-datasets from the original dataset and feed them to
each classifier to use Voting at the end.

Ø Boosting: To strengthen a classifier, Boosting incrementally builds an ensemble by training
each model with the same dataset but weighted by error of the last prediction.

Data Preparation

Among 12 features, Date and time, IP address and port number and the number of flows were
excluded because Date was all the same, and there were very specific IP addresses that were set
to Bots. Each test was done by splitting the dataset randomly into training and test set in ratio of
8:2. The following is the averaged values of 5 runs for each algorithm on a single machine with
64GB of memory.

Ø Decision tree without any ensemble method would the most preferable.
Ø  Taking ensemble methods in a hope of enhancing the accuracy of machine learning algorithms

for Botnet detection is not likely to be a help to the actual detection.
Ø When a real-time detection system is considered, taking GNB or DT without any ensemble

methods could be a good option.

Future works
Ø Data dependency: The accuracy results are much lower when it comes to the huge dataset.

Possible reason can be overfitting or the very nature of the different bots (Neris & Rbot). Also,
Boosting GNB shows near zero of MCC which means no better than random prediction. The
reason for this is also to be studied.

Ø Other algorithms / dataset can be evaluated: SVM, k-NN or Random forest algorithms can be
tested to see if they are appropriate for botnet detection. Also, more network attribute can be
considered by making full use of NetFlow features.

Ø Scalability: Spark MLlib also provides classification algorithms. But ensemble methods are not
developed yet. Finding out if it is feasible to implement the ensemble methods with Spark MLlib
can be considered.

Individual
algorithms

•  DT >= NN >GNB in accuracy
•  NN > DT > GNB in time consumption

Voting •  Better than GNB and NN, but worse than DT
•  This is because combining all three algorithms works by averaging the predictions

Boosting

•  Adaboosting does not help either GNB or DT.
•  Boosting works combining multiple ‘weak’ classifiers. DT is already strong enough.
•  It takes much more time than sole algorithm and lowers the scores for GNB.
•  Taking Adaboosting to make the detection better is not worth considering.

Bagging

•  Bagging each algorithm seems very similar to using a single classifier.
•  Bagging DT does not provide considerably better results for each algorithm alone.
•  Bagging works by sampling training data to literately train the model.
•  But data itself is very sparse.

Figure 1. A centralized Botnet architecture and its three different
behaviors

𝑷(𝒄|𝒙)= ​𝑷​𝒙⁠𝒄 
(𝒄)/𝑷(𝒙) 	

Figure 2. Network Flow distribution of t dataset

Table 1. Data
description for
each dataset
(Left)

Accuracy scores of each algorithms and ensemble method

Table 2. Interpretation of the results

Findings

Dataset #9 #10 #11
Duration(hrs) 5.18 4.75 0.26

Packets 115,415,321 90,389,782 6,337,202
Tot. size of Packets 94GB 73GB 5.2GB

NetFlows 2,753,885 1,309,792 107,252
Tot. size of Netflows 1.5GB 980MB 74MB

Botnet
Flows

184,979
(6.68%)

106,352
(8.11%)

8,163
(7.60%)

Normal
Flows

43,340
(1.57%)

15,847
(1.2%)

2,718
(2.53%)

Background
Flows

2,525,565
(91.7%)

1,187,592
(90.67%)

96,369
(89.85%)

Bot (#Bots) Neris(10) Rbot(10) Rbot(3)

Table 2.
Features in
each dataset
(Right)

0.9339	
 0.9787	

0.9874	

0.1825	

0.8457	

0.9711	

0	

0.2	

0.4	

0.6	

0.8	

1	

#9	
 #10	
 #11	

GNB	
 F1	
 MCC	

0.9554	
 0.9974	
 0.9945	

0.2811	

0.9773	
 0.9873	

0	

0.2	

0.4	

0.6	

0.8	

1	

#9	
 #10	
 #11	

NN	

F1	
 MCC	

0.9665	
 0.9986	
 0.9996	

0.5606	

0.9876	
 0.9991	

0	

0.2	

0.4	

0.6	

0.8	

1	

#9	
 #10	
 #11	

DT	

F1	
 MCC	

0.9585	
 0.9974	

0.9993	

0.3645	

0.9777	

0.9984	

0	

0.2	

0.4	

0.6	

0.8	

1	

#9	
 #10	
 #11	

Vo9ng-­‐All	

F1	
 MCC	

0.5705	

0.7799	

0.8627	

-­‐0.0223	
 -­‐0.0073	

0.7481	

-­‐0.2	

0	

0.2	

0.4	

0.6	

0.8	

1	

#9	
 #10	
 #11	

Boos9ng-­‐GNB	

F1	
 MCC	

0.9674	
 0.9986	

0.9997	

0.5696	

0.9879	

0.9992	

0	

0.2	

0.4	

0.6	

0.8	

1	

#9	
 #10	
 #11	

Boos9ng-­‐DT	

F1	
 MCC	

0.9339	
 0.9786	
 0.9874	

0.1827	

0.8456	

0.9711	

0	

0.2	

0.4	

0.6	

0.8	

1	

#9	
 #10	
 #11	

Bagging-­‐GNB	

F1	
 MCC	

0.9553	
 0.9976	

0.9982	

0.2558	

0.9791	
 0.9958	

0	

0.2	

0.4	

0.6	

0.8	

1	

#9	
 #10	
 #11	

Bagging-­‐NN	

F1	
 MCC	

0.9674	
 0.9986	
 0.9996	

0.5690	

0.9880	
 0.9991	

0	

0.2	

0.4	

0.6	

0.8	

1	

#9	
 #10	
 #11	

Bagging-­‐DT	

F1	
 MCC	

Data #9 #10 #11
Time(s
) 1.38 1.02 0.07

Data #9 #10 #11
Time(s
) 242.58 185.5 19.21

Data #9 #10 #11
Time(s
) 22.58 10.44 0.42

Data #9 #10 #11
Time(s
) 356.86 209.55 17.45

Data #9 #10 #11
Time(s
) 244.98 162.62 10.16

Data #9 #10 #11
Time(s
) 13564.14 3595.28 54.44

Data #9 #10 #11
Time(s
) 23.22 15.68 0.96

Data #9 #10 #11
Time(s
) 1587.7 918.94 71.35

Data #9 #10 #11
Time(s
) 70.99 42.95 1.63

@purduewhpc	

