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INTRODUCTION 

METHODOLOGY: ALGORITHMS & METRICS 

CONCLUSION 

TEST & RESULTS 

Botnet is a network of compromised devices controlled by a Botmaster for malicious tasks.  
Botnet Detection, like Intrusion Detection System, can be done by monitoring observable botnet 
behaviors in network traffics. Machine learning techniques, nowadays, have been popularly used 
to detect abnormal traffics.  

dddddd	
  

Machine Learning Algorithms  
& Ensemble Methods 
 

The most common  machine learning (ML) algorithms 
for classification are Gaussian Naïve Bayes (GNB), 
Neural Networks (NN) and Decision Tree (DT). These 
all are supervised learning which need labeled data. 
 

Ensemble methods, which combine predictions of 
each ML classifier with or without weights, can be 
distinguished as below.  

The CTU-13 dataset is a public dataset featuring Botnet traffic mixed with normal and background 
traffic captured at the CTU university, Czech Republic in 2011. Among 13 different network traffic 
captures, #9, #10, and #11 were used. Feature 

Date 
Flow start time 
Duration 
Protocol 
Src IP addr:Port 
Dst IP addr:Port 
Flags 
Types of 
services 
# of Packets 
# of Bytes 
# of Flows 
Label 

DATASET 

Accuracy Measurements 
 

To compare accuracy of the algorithms, the following metrics are considered. 
 

Ø  F1 score: F1 score considers both the precision 𝑝 and the recall 𝑟 of the test. F1 score can be  and the recall 𝑟 of the test. F1 score can be  of the test. F1 score can be 
between 0 and 1 where 1 means its best value and 0 its worst. 

 

𝐹1=2  ∗​𝑝∗𝑟/𝑝+𝑟                   𝑤ℎ𝑒𝑟𝑒  𝑝= ​𝑇𝑃/𝑇𝑃+𝐹𝑃 ,    𝑟= ​𝑇𝑃/𝑇𝑃+𝐹𝑁  
 

Ø Matthews correlation coefficient (MCC):  With true and false positives and negatives, MCC 
can be between -1 and +1 where +1 means a perfect prediction, 0 no better than random 
prediction and -1 and inverse prediction. 

 

𝑀𝐶𝐶= ​𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁/√⁠(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)   

Results 

Although F1 score generally shows higher scores than MCC, MCC is more reliable because the 
true negatives are not considered in F1 score. 

Botmaster Botnet 
Control & 

Command Servers 

Communicate using 
HTTP, POP3, IRC 

Send SPAM 
Execute DoS attack 
Obtain sensitive data 

1. Botmaster generates traffic 
while communication 

2. DNS traffic to C&C server 
often remain unchanged 

3. System/library calls are 
made by Botnet 

Victim 

Botnet detection systems may use one or more machine learning algorithms, but would making 
use of them together really make a difference? 

Neural 
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Ø Voting: As the simplest way, all different classifiers are trained separately with whole training 
data and its posterior probabilities are averaged. 

Ø Bagging: It samples multiple random sub-datasets from the original dataset and feed them to 
each classifier to use Voting at the end. 

Ø Boosting: To strengthen a classifier, Boosting incrementally builds an ensemble by training 
each model with the same dataset but weighted by error of the last prediction. 

Data Preparation 
 

Among 12 features, Date and time, IP address and port number and the number of flows were 
excluded because Date was all the same, and there were very specific IP addresses that were set 
to Bots. Each test was done by splitting the dataset randomly into training and test set in ratio of 
8:2. The following is the averaged values of 5 runs for each algorithm on a single machine with 
64GB of memory.  

Ø Decision tree without any ensemble method would the most preferable. 
Ø  Taking ensemble methods in a hope of enhancing the accuracy of machine learning algorithms 

for Botnet detection is not likely to be a help to the actual detection.  
Ø When a real-time detection system is considered, taking GNB or DT without any ensemble 

methods could be a good option.  
 

Future works 
Ø Data dependency: The accuracy results are much lower when it comes to the huge dataset. 

Possible reason can be overfitting or the very nature of the different bots (Neris & Rbot). Also, 
Boosting GNB shows near zero of MCC which means no better than random prediction. The 
reason for this is also to be studied. 

Ø Other algorithms / dataset can be evaluated: SVM, k-NN or Random forest algorithms can be 
tested to see if they are appropriate for botnet detection. Also, more network attribute can be 
considered by making full use of NetFlow features.  

Ø Scalability: Spark MLlib also provides classification algorithms. But ensemble methods are not 
developed yet. Finding out if it is feasible to implement the ensemble methods with Spark MLlib 
can be considered. 

Individual 
algorithms 

•  DT >= NN >GNB in accuracy 
•  NN > DT > GNB in time consumption 

Voting •  Better than GNB and NN, but worse than DT 
•  This is because combining all three algorithms works by averaging the predictions 

Boosting 

•  Adaboosting does not help either GNB or DT.  
•  Boosting works combining multiple ‘weak’ classifiers. DT is already strong enough.  
•  It takes much more time than sole algorithm and lowers the scores for GNB.  
•  Taking Adaboosting to make the detection better is not worth considering. 

Bagging 

•  Bagging each algorithm seems very similar to using a single classifier. 
•  Bagging DT does not provide considerably better results for each algorithm alone. 
•  Bagging works by sampling training data to literately train the model.  
•  But data itself is very sparse. 

Figure 1. A centralized Botnet architecture and its three different 
behaviors 

𝑷(𝒄|𝒙)= ​𝑷​𝒙⁠𝒄 
(𝒄)/𝑷(𝒙) 	
  

Figure 2. Network Flow distribution of t dataset 

Table 1. Data 
description for 
each dataset 
(Left) 

Accuracy scores of each algorithms and ensemble method 

Table 2. Interpretation of the results 

Findings 

Dataset #9 #10 #11 
Duration(hrs) 5.18 4.75 0.26 

# Packets 115,415,321 90,389,782 6,337,202 
Tot. size of Packets 94GB 73GB 5.2GB 

# NetFlows 2,753,885 1,309,792 107,252 
Tot. size of Netflows 1.5GB 980MB 74MB 

# Botnet  
Flows 

184,979 
(6.68%) 

106,352 
(8.11%) 

8,163 
(7.60%) 

# Normal  
Flows 

43,340 
(1.57%) 

15,847 
(1.2%) 

2,718 
(2.53%) 

# Background  
Flows 

2,525,565 
(91.7%) 

1,187,592 
(90.67%) 

96,369 
(89.85%) 

Bot ( #Bots ) Neris(10) Rbot(10) Rbot(3) 

Table 2. 
Features in 
each dataset 
(Right) 
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