
High	
 Performance	
 Computing	
 for	
 Spiking	
 Neuromorphic	
 Network	
 Training
Catherine D. Schuman (Oak Ridge National Laboratory)

Grant Bruer, J. Parker Mitchell, James S. Plank and Mark Dean (University of Tennessee)

Introduction
• A neuromorphic computer is a computer whose underlying

architecture and the way that it performs computation is
inspired by biological brains.

• Motivation for neuromorphic computing:
• End of Moore’s law.
• End of Dennard scaling.
• von Neumann bottleneck.
• Need for intelligent computation.

• How do we typically train neuromorphic computers?
• Off-line training using back-propagation [1]: Does

not utilize the full capabilities of the SNN, including
temporal processing capabilities.

• On-line training using STDP [2]: How do we
determine the appropriate structure and delays in
the network?

• We propose an evolutionary optimization (EO) approach for
training spiking neural networks for neuromorphic
computers [3].

• We scale our EO training approach to improve training time
and overall performance [4].

Neuromorphic Networks

HPC-Enabled
Evolutionary Optimization

Results

Conclusions
• Evolutionary optimization (EO) is a valid approach to designing

all aspects of spiking neural networks for neuromorphic
computers.

• Utilizing a large-scale HPC systems will improve EO
performance by significantly shortening training time and
producing better overall performance.

• Trained solutions on HPC systems can then be deployed onto
physical hardware for real tasks to achieve low power
solutions.

References:
1. Esser, S.K., et al. "Convolutional networks for fast, energy-­‐efficient neuromorphic computing." Proceedings of the National Academy of

Sciences(2016): 201604850.
2. Zamarreño-­‐Ramos, C., et al. "On spike-­‐timing-­‐dependent-­‐plasticity, memristive devices, and building a self-­‐learning visual cortex." Frontiers in

neuroscience 5 (2011).
3. Schuman, C.D., et al. "An evolutionary optimization framework for neural networks and neuromorphic architectures." Neural Networks (IJCNN),

2016 International Joint Conference on. IEEE, 2016.
4. Schuman, C.D., et al. "Parallel evolutionary optimization for neuromorphic network training." Machine Learning in HPC Environments (MLHPC),

Workshop on. IEEE, 2016.

References:
5. Dean, M.E., et al. “An Application Development Platform for Neuromorphic Computing." Neural Networks (IJCNN), 2016 International Joint

Conference on. IEEE, 2016.
6. Plank, J.S., et al. “A Unified Hardware/Software Co-­‐Design Framework for Neuromorphic Computing Devices and Applications.” IEEE International

Conference on Rebooting Computing (ICRC 2017), November 2017. Accepted.
7. Mitchell, J.P., et al. “NeoN: Neuromorphic Control for Autonomous Robotic Navigation." 2017 IEEE 5th International Symposium on Robotics and

Intelligent Sensors, October 2017. Accepted.

Contact:
Email: schumancd@ornl.gov
Website: CatherineSchuman.com
TENNLab: neuromorphic.eecs.utk.edu

Acknowledgements:
This	
 research	
 was	
 supported	
 in	
 part	
 by	
 an	
 Air	
 Force	
 Research	

Laboratory	
 Information	
 Directorate	
 grant	
 (FA8750-­‐16-­‐1-­‐0065).	
 It	

is	
 also	
 supported	
 in	
 part	
 by	
 the	
 National	
 Science	
 Foundation	

grant	
 1631472.	
 This	
 research	
 used	
 resources	
 of	
 the	
 Oak	
 Ridge	

Leadership	
 Computing	
 Facility,	
 which	
 is	
 a	
 DOE	
 Office	
 of	
 Science	

User	
 Facility	
 supported	
 under	
 Contract	
 DE-­‐AC05-­‐00OR22725.	

The	
 allocation	
 on	
 OLCF's	
 Titan	
 was	
 made	
 possible	
 through	
 a	

Department	
 of	
 Energy	
 Office	
 of	
 Science’s	
 ASCR	
 Leadership	

Computing	
 Challenge	
 (ALCC)	
 award.	
 Research	
 sponsored	
 in	
 part	

by	
 the	
 Laboratory	
 Directed	
 Research	
 and	
 Development	
 Program	

of	
 Oak	
 Ridge	
 National	
 Laboratory,	
 managed	
 by	
 UT-­‐Battelle,	
 LLC,	

for	
 the	
 U.	
 S.	
 Department	
 of	
 Energy.

• Our neuromorphic systems implement spiking neural
networks composed of neurons and synapses.

• Neurons accumulate charge until their threshold
(parameter) is reached, and then they fire.

• Synapses transfer weight (parameter) charge
between neurons, but it takes delay (parameter)
time to travel along the synapse.

• Here we use Dynamic Adaptive Neural Network Arrays
(DANNA), which is an FPGA-based neuromorphic
implementation [5].

Unused	
 element

Element	
 acting	

as	
 neuron

Element	
 acting	

as	
 synapse

DANNA	
 with	
 15	
 rows	
 and	
 15	
 columns	
 (15x15)	
 with	

a	
 pre-­‐loaded	
 network	
 configuration

• Training method uses genetic algorithms or evolutionary
optimization (EO) to determine structure (number of
neurons and synapses) and parameters (threshold of
neurons, etc.) for particular applications.

• Basic EO implementation uses a single process with
multiple threads for fitness evaluation.

Create	
 Initial
Population
of	
 Networks

Evaluate	
 All	

Members	
 of	

Population

Fitness Fitness

Fitness Fitness

Parallel	
 Fitness	

Evaluation	

(Multi-­‐Threaded)

Selection	
 and	

Reproduction	

(Crossover	
 and	

Mutation)	

to	
 Create	
 Child	

Population

Child	
 PopulationBasic	
 EO

• Parallel EO uses many basic EO processes as slaves, and
implements hierarchical ”master” processes to
communicate the best performing networks between basic
EO processes.

• Master processes also maintain their own set of networks,
and while waiting to hear from their slave processes, create
new networks through random generation and reproduction
operations.

Basic	

EO

Basic	

EO

Basic	

EO

Master

Basic	

EO

Basic	

EO

Basic	

EO

Master

Basic	

EO

Basic	

EO

Basic	

EO

Master

Basic	

EO

Basic	

EO

Basic	

EO

Master

Master

Best	

Network

Best	

Network

• Train a neuromorphic network to
control a robot by taking LIDAR sensor
input and output motor controls [6,7].

• The LIDAR sensor is mounted on a
servo, which scans back and forth in a
120 degree arc, taking measurements
every 30 degrees.

• Task is to cover as much ground as possible without running
into any obstacles.

• Fitness function for the EO: Simulates navigating the robot in
an empty room, in a room with obstacles, and on a table with
obstacles. We calculate the fitness as the percentage of the
room that the robot traversed, with a penalty if the robot hit an
obstacle or fell off the table.

• We trained on Oak Ridge Leadership Computing Facility’s
Titan for 24 hours on 18,000 nodes, simulating the
neuromorphic system controlling the robot in several
simulated environments.

• The resulting network is the best network produced to date
for all of our training approaches for this task.

• We deployed the network onto the FPGA on the physical
robot, which is able to successfully navigate unfamiliar
environments.

Resulting	
 network	
 One	
 simulation	
 result

