
High	
  Performance	
  Computing	
  for	
  Spiking	
  Neuromorphic	
  Network	
  Training
Catherine D. Schuman (Oak Ridge National Laboratory)

Grant Bruer, J. Parker Mitchell, James S. Plank and Mark Dean (University of Tennessee)

Introduction
• A neuromorphic computer is a computer whose underlying 

architecture and the way that it performs computation is 
inspired by biological brains. 

• Motivation for neuromorphic computing:
• End of Moore’s law.
• End of Dennard scaling.
• von Neumann bottleneck.
• Need for intelligent computation.

• How do we typically train neuromorphic computers?
• Off-line training using back-propagation [1]: Does 

not utilize the full capabilities of the SNN, including 
temporal processing capabilities.

• On-line training using STDP [2]: How do we 
determine the appropriate structure and delays in 
the network?

• We propose an evolutionary optimization (EO) approach for 
training spiking neural networks for neuromorphic 
computers [3].

• We scale our EO training approach to improve training time 
and overall performance [4].
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Conclusions
• Evolutionary optimization (EO) is a valid approach to designing 

all aspects of spiking neural networks for neuromorphic 
computers.

• Utilizing a large-scale HPC systems will improve EO 
performance by significantly shortening training time and 
producing better overall performance.

• Trained solutions on HPC systems can then be deployed onto 
physical hardware for real tasks to achieve low power 
solutions.
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• Our neuromorphic systems implement spiking neural 
networks composed of neurons and synapses.

• Neurons accumulate charge until their threshold
(parameter) is reached, and then they fire.

• Synapses transfer weight (parameter) charge 
between neurons, but it takes delay (parameter) 
time to travel along the synapse.

• Here we use Dynamic Adaptive Neural Network Arrays 
(DANNA), which is an FPGA-based neuromorphic 
implementation [5].
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• Training method uses genetic algorithms or evolutionary 
optimization (EO) to determine structure (number of 
neurons and synapses) and parameters (threshold of 
neurons, etc.) for particular applications.

• Basic EO implementation uses a single process with 
multiple threads for fitness evaluation.
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• Parallel EO uses many basic EO processes as slaves, and 
implements hierarchical ”master” processes to 
communicate the best performing networks between basic 
EO processes.

• Master processes also maintain their own set of networks, 
and while waiting to hear from their slave processes, create 
new networks through random generation and reproduction 
operations.
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• Train a neuromorphic network to 
control a robot by taking LIDAR sensor 
input and output motor controls [6,7].

• The LIDAR sensor is mounted on a 
servo, which scans back and forth in a 
120 degree arc, taking measurements 
every 30 degrees. 

• Task is to cover as much ground as possible without running 
into any obstacles. 

• Fitness function for the EO: Simulates navigating the robot in 
an empty room, in a room with obstacles, and on a table with 
obstacles. We calculate the fitness as the percentage of the 
room that the robot traversed, with a penalty if the robot hit an 
obstacle or fell off the table. 

• We trained on Oak Ridge Leadership Computing Facility’s 
Titan for 24 hours on 18,000 nodes, simulating the 
neuromorphic system controlling the robot in several 
simulated environments.  

• The resulting network is the best network produced to date 
for all of our training approaches for this task.

• We deployed the network onto the FPGA on the physical 
robot, which is able to successfully navigate unfamiliar 
environments.
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