
§ Aspen is a domain specific language (DSL) that uses special grammatical semantics to represent the performance models by
generating:

1. Application Model:
§ used to measure flops, loads, stores etc.

2. Machine Model:
§ finds theoretical peak performances etc.

§ Aspen is fast, portable and accurate [3]

§ Hardware Software Co-design framework consists of two components:

o Automatic Application Model generator
o Analyze source code
o Extract application characteristics e.g., FLOPS, loads, stores etc.
o Generate Aspen’s intermediate representation(IR)[1]
o Process Aspen’s IR to produce Aspen’s post processed IR

o Automatic Machine Model Generator
o Extract machine specifications using Linux user and kernel functions
o Generate Aspen’s intermediate representation
o Insert Aspen’s grammar and process it to produce post processed IR

An Automatic Hardware-Software Co-design Framework for 
Sensitivity Analysis of Proxy Applications

Mariam Umar+, Jeffrey S. Vetter *, Kirk W. Cameron +
Department of Computer Science, Virginia Tech+, *Oak Ridge National Laboratory, TN

{mariam.umar,kirk.w.cameron} @vt.edu,{vetter}@ornl.gov

§ HW-Software co-design is a challenge as we move towards more complex architectures and applications for exascale era:
o Existing solutions e.g., DVFS, memory throttling are no more efficient

§ Problem is exacerbated when:
o Implementing application specific hardware
o Integrating hardware with software
o Changing application/hardware specifications at runtime

Our Approach:
§ Automated hardware software co-design for Aspen, which generates

o Automated application model for Aspen
o Automated Machine Model for Aspen

§ Allows us to
o Develop and test application without requiring real hardware for future and exascale systems

o Obtain portable solution, which can be applied to a range of current and future architectures
o Avoid programmer’s involvement, minimal overhead
o Assist in approximate computing

Motivation

Aspen and Our Hardware Software Co-design Framework

[1] S. Lee, J. S. Meredith, and J. S. Vetter, “COMPASS: A framework for automated performance modeling and prediction,” ICS-2015.
[2] Ang, J. A., et.al., Abstract Machine Models and Proxy Architectures for Exascale Computing. Co-HPC ’14, New Orleans, Louisiana.
[3] K. L. Spafford and J. S. Vetter, “Aspen: a domain specific language for performance modeling,” SC12.

This material is based upon work supported in part by the NSF Grants No. 1422788, 0910784 and 0905187. The submitted manuscript has been
authored by a contractor of the U.S. Government under Contract No. DE-AC05-00OR22725. This research was supported in part by an ASTRO
appointment at the Department of Energy’s Oak Ridge National Laboratory, through the Oak Ridge Institute for Science and Education.

Acknowledgements References

Application 
Model

Aspen Source Code

Machine 
Model

Profiling and Analysis of Application, 
Machine, Sensitivity, Performance, etc.

What-If Analysis

Application Dominant hardware parameter? Why? Improvements?

CoMD PCIe Latency,
Core Clock, Memory Clock

Memory and communication intensive DVFS, memory throttling,
Application specific optimizations etc.

Matrix	Multiply PCIe	latency,
Core	clock,	Memory	Clock

Memory	and	communication	intensive DVFS,	memory	throttling,
application	specific	optimization	e.g.,	loop	unrolling etc.

Jacobi GDDR5	capacity,	PCIe	latency,	core	clock,	
memory	clock

Memory-Intensive	nature	and	much	
communication	involved

DVFS,	memory	throttling,
application	specific	optimizations	e.g.,	optimizing	use	of	on-
chip	memory	etc.

https://str.llnl.gov/october-2013/richards

Results and Analysis

§ .

Input Program 
Analyzer

So
ur

ce
 C

od
e

Aspen Intermediate 
Representation

Aspen IR Post 
Processor

Aspen Application 
M

odel

Automated Application Model Generator

Short-list Required 
Specs

Aspen Machine IR 
Generator

Aspen Machine IR 
Post Processor

Aspen M
achine M

odel

Automated Machine Model Generator
Automated Application and Machine Model Framework

Aspen Code

Runtime 
Predictor

App/Machine 
Analyzer

Extension to 
Exascale

Sensitivity 
Analysis ...

M
ac

hi
ne

 S
pe

cs
. 

Ex
tr

ac
to

r

0.00% 

10.00% 

20.00% 

30.00% 

40.00% 

50.00% 

60.00% 

70.00% 

80.00% 

90.00% 

100.00% 

GDDR5 
Capacity

GDDR5 
Bandwidth

SIMD PCIe 
Latency

PCIe 
Bandwidth

Core Clock Memory 
Clock

GDDR5 
Latency

Jacobi Small Medium Large

0.00% 

10.00% 

20.00% 

30.00% 

40.00% 

50.00% 

60.00% 

70.00% 

80.00% 

90.00% 

100.00% 

GDDR5 
Capcity

GDDR5 BW SIMD PCIe 
Latency

PCIe 
Bandwidth

Core Clock Memory 
Clock

GDDR5 
Latency

Matrix Multiply
Small Medium Large

0.00% 

10.00% 

20.00% 

30.00% 

40.00% 

50.00% 

60.00% 

70.00% 

80.00% 

90.00% 

100.00% 

GDDR5-
Capacity

GDDR5 
Bandwidth

SIMD PCIe 
Latency

PCIe 
Bandiwthd

Core Clock Memory 
Clock

GDDR5 
sensitivity

COMD Small Medium Large


